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Nonlinear Poisson-Boltzmann equation in spherical symmetry
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The Poisson-Boltzmann problem in spherical symmetry has been considered using the distribution of a
self-consistent potential around a charged grain in a thermal collisional plasma as an example. The qualitative
patterns of all possible solutions have been presented and a study of their asymptotics has been carried out. It
has been demonstrated that for large potentials it is possible to neglect the curvature of the grain surface and
to use the solution of the plane problem. It has also been demonstrated that the electrical interaction of the
grains is possible only at distances smaller than eight screening lengths.
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I. INTRODUCTION
The Poisson equation
Ap=-4mp (1)

is applicable to the description of the spatial distribution of
the electrostatic potential ¢ in a system with volume charge
density p. This problem often arises in research into colloid
suspensions and dusty plasma. Both these systems contain
free charged particles of the medium (ions and electrons) and
larger formations [colloidal particles (macroions) in colloid
suspensions and dust grains in a dusty plasma], which also
get a charge. In both cases, the charged grains (or macroions)
form a space-charge region that screens the charge of the
grain. The charged grain is the source of an electric field that
separates the electrons and ions near the grain surface, and
provides for the emergence of a volumetric charge. On the
other hand, the volumetric charge near the grain surface in-
fluences the spatial distribution of the potential and the field.
Thus, there is a self-consistent problem in defining the spa-
tial distribution of the electric field and the number densities
of the charge carriers.

For the solution of this problem it is convenient to present
the number density of charge carriers in the form of the
Boltzmann factor n~exp(—q¢/T), where ¢ is the charge. In
this case there is a self-consistent Poisson-Boltzmann equa-
tion

— 4P
Ap=—4m, ginjo exp — )
J

which is the nonlinear differential equation for the potential
@.

This representation is quite suitable for colloid suspen-
sions [1-4], but for dusty plasmas special substantiation is
necessary. For example, a gas-discharge collisionless dusty
plasma is not an equilibrium system; therefore the Boltz-
mann factor is not applicable to it [5], except for those cases
when e@<T [6] and the Boltzmann factor is used in the
linearized form [7,8]. Otherwise it is necessary to use other
approaches that are based on the motion of particles [8—10].

However, in a thermal collisional plasma there is a local
thermodynamic equilibrium that makes it possible to use the
Boltzmann factor [11-15]. A laboratory thermal dusty
plasma [16] (or smoky plasma) is an isothermal system and
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represents a gas at atmospheric or higher pressure and at the
temperatures of 1500-3500 K. Ionization in a thermal
plasma occurs due to collisions between gas particles; there-
fore such a plasma is strongly collisional, unlike the low-
pressure gas-discharge plasma. It usually contains easily ion-
izable atoms of alkali metals, as natural impurities or in the
form of special additional agents, which are the basic suppli-
ers of free electrons and singly charged positive ions. A
smoky plasma is formed in the area of condensation of the
products of combustion of a hydrocarbon or metallized fuels.
Thus, the potential distribution around a single grain in a
collision thermal plasma, as well as in colloid systems, is
described by the spherically symmetrical Poisson-Boltzmann
equation, which can be presented in the following form:

d*¢ 2de 4 ( « ep . —ecp) 3

2 T gy S Ame\neexp — - —n; exp — = |, (3)
where n: and nl* are the electron and ion number densities at
some point r*, where the potential is equal to zero. It should
be noted that the zero value of the potential at some point
does not at all mean a lack of field; therefore we cannot a
priori approve the equality of the number densities 7, and 7, .

A common solution of Eq. (3) is not known, therefore
various approaches are used. So, for example, in Ref. [11],
for particles with large radius it is suggested to neglect the
term (2/r)¢’, and for particles with small radius to use the
approach A¢p~0, i.e., the Coulomb potential. However, in
Ref. [17], it is shown that the Coulomb-type potential is not
applicable, because the image charge effect is essential near
the grain surface and a modification of the Debye potential is
made due to nonlinear corrections in the Boltzmann distribu-
tion.

The Debye potential is the solution of the linearized Eq.
(3). Linearization is possible for small potentials; however,
we were recently surprised to find that the Debye distribution
is used for large potentials, when linearization of the Poisson
equation is impossible. Therefore, we consider it necessary
to carry out a detailed analysis of the Poisson-Boltzmann
equation.

The studies of the Poisson-Boltzmann equations made by
other authors earlier are based on approaches that consider
the physical features of the system. In the present paper, a
detailed mathematical analysis of the spherically symmetri-
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cal Poisson-Boltzmann equation, irrespective of the field of
application, has been carried out. Therefore, we, though
speaking about the dust grains in a plasma for definiteness,
will not consider the ranges of validity of the Poisson-
Boltzmann theory as it is often used not only in plasma phys-
ics, but also in many other fields of physics.

The Poisson-Boltzmann equation is solved mostly nu-
merically; therefore the analysis offered by us will be a good
addition to the numerical solutions as it allows defining the
pattern of solution in advance.

II. PRELIMINARY EXAMINATION OF THE POISSON
EQUATION

We shall consider a separate grain in some volume of
plasma, consisting of the electrons and single-charged ions.
The number density of the grains is much less than the num-
ber density of the atoms of the added agent, which allows
consideration of a separate grain in the plasma. This ap-
proach corresponds to the model of Wigner-Seitz cells, for
the first time applied by Gibson [18], and in the isothermal
equilibrium plasma described by Eq. (3).

For further consideration it is necessary to choose some
reference point for the potential and, accordingly, for the
number densities of the charge carriers. The most common,
but not therefore the most correct, is a simple statement that
at r— @=0. It is valid only for a single grain in an infinite
plasma. If the volume of plasma is limited, at the boundary
of the volume there is a space-charge layer, caused by the
different mobilities of electrons and ions.

We shall use the bulk plasma potential concept that per-
formed well both in a dust-electron plasma [19] and in a
complex plasma [20]. This model assumes that the potential
is calculated from some base level ¢,;, which depends on the
charge of the gas phase. Thus, the interaction of dust grains
with the plasma or the presence of an active boundary of the
plasma volume leads to a change of ¢,;. It allows use of a
single-particle approach for any grain with the boundary
conditions r—, =g, or the Wigner-Seitz approach with
the requirement that ¢ ~ ¢,; on the boundary of the cell.

In our case, the bulk plasma potential is the trivial solu-
tion of Eq. (3)

T n
=—In—, 4
(Ppl 26 ( )

e

A(Ppl = 0’

and either of the two replacements ¢(r)=@,,= ¢(r) reduces
Eq. (3) to the following form:

Ag(r) = 8#6\’@ sinh ﬂj("r). (5)

Therefore, all the solutions of Eq. (3) are symmetrical
about the line Eq. (4), and any solution that differs from the
trivial solution cannot touch this trivial solution by virtue of
the theorem of existence and uniqueness.

Further, we shall pay attention to the fact that, owing to
oddness of the function sinh(x), the solutions having a local
minimum are located in the half plane ¢> ¢, and the solu-
tions having a local maximum in the half plane ¢ <¢,,. The
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solutions having an extreme correspond to repulsion of the
grains. Hence, the grains repel only when both surface po-
tentials are greater than ¢, or both are less than ¢,,. If the
surface potentials of the neighboring grains are located on
the different legs of the line Eq. (4), the grains are attracting.

The presence of an electric field in the plasma is defined
by the value V¢ and, as will be shown further, localized in a
thin layer at the grain surface. Far from the dust grain ¢
~0 and V¢ ~0. In these areas, the plasma remains locally
neutral (quasineutral), that is, the electron and ion number
densities are equal to some value, called the unperturbed
number density n,(¢,;) ~n:(¢,;) ~ noy, and the value ¢, char-
acterizes the size of the operation that is necessary for the
volume of plasma to gain some charge Q. In detail, the bulk
plasma potential is described in Ref. [20] and for a Wigner-
Seitz cell of radius Ry, =(47N,/3)""" the following expres-

sion is valid:
Ry
f (rE)*dr

a’E,

()Dpl =- > (6)
where E; is the field at the surface of the grain with radius a.

Let us note that the bulk plasma potential is not only a
reference mark that can be shifted in any way. The bulk
plasma potential is immediately related to the thermody-
namic and dielectric properties of the plasma, or any other
medium to which the Poisson-Boltzmann theory is applied.
For example, if the perturbation factor in the plasma is only
the electric field, the bulk plasma potential defines the ion-
ization equilibrium as the additive to the ionization potential
of atoms: I,;=I+e¢,. Moreover, in some cases the spatial
inhomogeneity of the bulk plasma potential determines the
formation of the ordered structures [21].

III. ASYMPTOTIC SOLUTIONS OF THE POISSON
EQUATION

Equation (5) is easily reduced to the dimensionless form
by means of the change of variables ®(r)=e(r)/T, x
=rl/rp:

2
@" + —®' =sinh(P), (7)
X

where rp=\T/8me’n, is the screening length.

Applying the transformations v(y)=®(x) and y=1/x to
Eq. (7), for the new unknown function v(y) we shall obtain
an equation of the form

d*v 4
— =y " sinh(v). 8
Pl ) (8)

As v'(y)=1/y'(v) and v"(y)==y"(v)/[y’ (v)]’, in relation
to the inverse function y(v) Eq. (8) will have the following
form:

y"==sgn(y")sinh(v)y~*|y'>. ©)

This equation is a special case of the more general differen-
tial equation
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FIG. 1. Solutions of Eq. (7) for radius of grain a=0.1rp. (a)
Equation (11b); (b) line 2, Eq. (11c¢) or Eq. (11d), 6=0; line 1, Eq.
(11d), 6> 0; line 3, Eq. (11d), §<0.

A, (10)

y'=p)y*y’

where «a and B are real numbers, and p is a function continu-
ous in some interval of the real axis.

The asymptotic formulas of all solutions of Eq. (10) as
v vy (tends to any point v, from below) were obtained in
[22,23]. The asymptotic solutions of Eq. (10) as v | v, (tends
to any point v, from above) can be easily obtained from
those results by means of some simple replacements of an
independent variable. Thus, the asymptotics of each solution
of Eq. (10) can be written at any point from the closure of
the range of definitions of this solution, which allows us to
feature a global pattern of behavior of all solutions of Eq.
(10).

By means of applying the results of Refs. [22,23] to Eq.
(9), it is possible to construct a qualitative pattern of behav-
ior of all solutions of Eq. (7), presented in Figs. 1 and 2.

We want to note the likeness of the plots Figs. 1(b) and
2(b) with the investigation made by Deryagin for the planes
in an electrolyte [24]. Similar results have been obtained in
Ref. [20] for inter-reacting planes in a thermal plasma. But in
this case the potential distribution depends on the grain ra-
dius. It is clear that at a constant value of the surface poten-
tial of the dust grain the field at the surface decreases as the
radius of the grain increases. This means that the fine grains
are screened at shorter distances.

The following asymptotic relations can be written out for
the solutions of Eq. (7) concerning the first derivative:

0 5 1070 11 12 13 14
X X
FIG. 2. Solutions of Eq. (7) for radius of grain a=10rp. (a)
Equation (11b); (b) line 2, Eq. (11¢) or Eq. (11d), 6=0; line 1, Eq.
(11d), 5>0; line 3, Eq. (11d), 6<0.
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®
¢’ = +exp 5[1+0(1)], O — oo, (11a)

i% sinh(y)x[1 +0(1)], (11b)

x—0,

1
¢(I><—+ 1)[1 +0(1)], x—o», @®—=0,
X

(11c)
2
b
ix—g2\/sinh2 —+41+0(1)], x— x,
X 2
(11d)

where v is the value of the potential at the point x=0, and x,
is an arbitrary point within the area of definition of the solu-
tion. The stationary value & defines the view of dependence
®(x): if 6>0, the dependence looks like curve 1; if =0, the
dependence looks like curve 2; if 6<0, the dependence
looks like curve 3 in Figs. 1 and 2.

Let us compare Eq. (11a) to the expression for the field at
a flat surface in a plasma:

, . ) -d

@’ =2 sinh 5 =exp 5 exp 3 (12)

It is easy to see that, at the surface potential |®/> 1, Eq.

(12) coincides with Eq. (11a). Hence the deduction, which is

very important for the simplified description of the potential

distribution around the grain, that at large values of the sur-

face potential (e|¢,|>T) the curvature of the grain can be

neglected, and the solution of the plane problem [11] can be
used,

1 + tanh(d /4 [rp—
anh(® /4)exp(alrp — x) B> 1.

(I) = 2 1 s s
(x) C tanh(® /4)exp(alrp — x)

(13)

Thus, we extend the applicability of Eq. (13), which was
earlier used only for the obvious case of a>rp,.

The bulk plasma potential Eq. (6) in this case is described
by the expression

2 d tanh e, (14)
=—2—tanh —,
ol e 4
i.e., it defines a constant in Eq. (13).

Equation (11b) describes the distribution of the field in a
restricted volume of the plasma, when there are no charged
grains inside. In this case, the bulk plasma potential Eq. (6)
is described by the expression
2

T .
G sinh(7) (15)

1513
where R is the radius of the spherical volume.

The bulk plasma potential Eq. (15) grows proportionally
to the surface area, restricting the volume of the plasma, as
only the active surface is the source of volumetric charge in
the plasma in this case.
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Equation (11c¢) after integration coincides with the Debye
potential ®(x)=C exp(—x)/x; thus it describes the linearized
Poisson-Boltzmann equation. Because on the boundary of
the Wigner-Seitz cell ¢(Ry)~ @' (Ry)~0, the bulk plasma
potential in this case is described by the expression

1 rD>
~—¢|-+— . 16
(Ppl ¢3( 2 a ( )

Equation (11d) is valid in the vicinity of Ax of any point
X, belonging to the interval [a,R], where R is the radius of
the considered volume of plasma with the grain of radius a in
the center. This equation can be reduced to the following
form:

# =+ xé(—— C(xo)). (17)
2Vsinh*(d/2) + & X
Equation (17) contains an integral which is the solution of
the plane problem, i.e., the solution of the equation ®”
=sinh(®), which describes the potential in the plasma near
the flat surface. It is possible to reduce this integral to a
canonical form, by defining the limits of integration from the
value @ up to an infinitely large value and carrying out the
replacement r=sinh(d/2),

JwL X=X\, (18)

=
o VE+ (> +9)

where A\ is the value of coordinate at which the potential
tends to infinity (it is clear that always A <a/rp).

The solutions of Eq. (18) are represented according to
Ref. [25] in Jacobi elliptic functions, and are periodic func-
tions with the period 4K, where K is the complete elliptic
integral of the first kind:

1

S (19)
0 N1 =2)(1 = mr?)
where m=1- 6 for >0 and m=1/(1-0) for §<0.

This means that the solution reaches infinite values at a
distance of 2K from A, i.e., the radius of the Wigner-Seitz
cell Ry=(4mN,/3)~"3 must satisfy the inequality

Rw/rD <K.

K(m) =

As it follows from the tables [25] for the complete elliptic
integrals of the first kind, to large values of K there corre-
spond values of the parameter m=1. For example, to the
value K=4 there corresponds m=0.995, whence it follows
that 6=+0.005. At such small values of the constant J it can
be neglected, i.e., in this case we can use the solution for a
single grain in an infinite plasma, because at the distance of
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4rp the potential decreases from the infinitely large value up
to the value ¢~0.17/e. Hence, if the Wigner-Seitz radius
Ry >4rp, it is always possible to use the boundary condi-
tions ¢p(0)=0, because the chosen grain does not feel influ-
ence of other grains.

Thus, the space-charge layer at the grain surface cannot
exceed 4rp in the flat case, and as the grain radius decreases
it becomes even less. The number density of grains in the
plasma is usually such that Ry, > rp. Therefore, the change of
the charge of an individual grain does not affect the field at
the surface of other grains, i.e., the grains do not interact via
the electrical potential. Therefore, the forces responsible for
observable ordering of grains in the plasma are not of elec-
trical nature.

It is necessary to consider the bulk plasma potential Egs.
(14)—(16) in diagnosing the plasma as it defines the change
of the chemical potential of electrons, du,=-e¢,/2; there-
fore, the measured value of the electrostatic potential de-
pends both on the relative potential ¢ and on the bulk plasma
potential [20].

IV. CONCLUSION

In the presented paper, we intentionally do not consider
the range of validity of the Poisson-Boltzmann theory as this
theory is applied in many fields of physics. Based on our
analysis using it, it is possible to draw the following conclu-
sions.

(i) The Poisson-Boltzmann equation in spherical symme-
try has only four kinds of solution whose qualitative patterns
are presented in the plots. The asymptotics of these solutions
are described by Egs. (11).

(ii) At large charges of the dust grain, the grain curvature
can be neglected and it is possible to use the solution of the
plane problem. Thus, the solution of the plane problem can
be used for grains with large radius, when a > rp, and under
the condition of |¢|>T/e for grains of any radius. In this
case, the plane solution is used immediately at the grain sur-
face in the area of change of the potential %> |¢| =1, which
corresponds to the maximal distance 1.4rj, [25]. Further, it is
necessary to renormalize the potential as, for example, is
done in Ref. [11] and transfer to the spherically symmetrical
Debye potential.

(iii) The potential changes from a constant large value up
to a value of 0.17 at the distance of 4r), in the plane, and this
distance decreases as the curvature of the grain surface in-
creases. This means that the maximum distance where the
field exists is 4rp, and as the grain radius decreases the
screening effect increases. Thus, within the limits of the
Poisson-Boltzmann theory, the electrical interaction between
grains exists only at distances, smaller than 8rp,.
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